.. _smog: SMoG ==== Example implementation of the Synchronous Momentum Grouping (SMoG) paper. SMoG follows the framework of contrastive learning but replaces the contrastive unit from instance to group, mimicking clustering-based methods. To achieve this, they propose the momentum grouping scheme which synchronously conducts feature grouping with representation learning. Reference: `Unsupervised Visual Representation Learning by Synchronous Momentum Grouping, 2022 `_ .. tabs:: .. tab:: PyTorch .. image:: https://img.shields.io/badge/Open%20in%20Colab-blue?logo=googlecolab&label=%20&labelColor=5c5c5c :target: https://colab.research.google.com/github/lightly-ai/lightly/blob/master/examples/notebooks/pytorch/smog.ipynb This example can be run from the command line with:: python lightly/examples/pytorch/smog.py .. literalinclude:: ../../../examples/pytorch/smog.py .. tab:: Lightning .. image:: https://img.shields.io/badge/Open%20in%20Colab-blue?logo=googlecolab&label=%20&labelColor=5c5c5c :target: https://colab.research.google.com/github/lightly-ai/lightly/blob/master/examples/notebooks/pytorch_lightning/smog.ipynb This example can be run from the command line with:: python lightly/examples/pytorch_lightning/smog.py .. literalinclude:: ../../../examples/pytorch_lightning/smog.py