# LightlyTrain Documentation
LightlyTrain Banner LightlyTrain Banner
```{eval-rst} .. image:: _static/lightly_train_light.svg :align: center :class: only-light .. image:: _static/lightly_train_dark.svg :align: center :class: only-dark ``` [![Google Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/lightly-ai/lightly-train/blob/main/examples/notebooks/quick_start.ipynb) [![Python](https://img.shields.io/badge/Python-3.8%7C3.9%7C3.10%7C3.11%7C3.12-blue.svg)](https://docs.lightly.ai/train/stable/installation.html) [![OS](https://img.shields.io/badge/OS-Linux%7CMacOS%7CWindows-blue.svg)](https://docs.lightly.ai/train/stable/installation.html) [![Docker](https://img.shields.io/badge/Docker-blue?logo=docker&logoColor=fff)](https://docs.lightly.ai/train/stable/docker.html#) [![Documentation](https://img.shields.io/badge/Documentation-blue)](https://docs.lightly.ai/train/stable/) [![Discord](https://img.shields.io/discord/752876370337726585?logo=discord&logoColor=white&label=discord&color=7289da)](https://discord.gg/xvNJW94) *Train Better Models, Faster* LightlyTrain is the leading framework for transforming your data into state-of-the-art computer vision models. It covers the entire model development lifecycle from pretraining DINOv2/v3 vision foundation models on your unlabeled data to fine-tuning transformer and YOLO models on detection and segmentation tasks for edge deployment. [Contact us](https://www.lightly.ai/contact) to request a license for commercial use. ## News - \[[0.12.0](https://docs.lightly.ai/train/stable/changelog.html#changelog-0-12-0)\] - 2025-11-06: 💡 **New DINOv3 Object Detection:** Run inference or fine-tune DINOv3 models for [object detection](https://docs.lightly.ai/train/stable/object_detection.html)! 💡 - \[[0.11.0](https://docs.lightly.ai/train/stable/changelog.html#changelog-0-11-0)\] - 2025-08-15: 🚀 **New DINOv3 Support:** Pretrain your own model with [distillation](https://docs.lightly.ai/train/stable/methods/distillation.html#methods-distillation-dinov3) from DINOv3 weights. Or fine-tune our SOTA [EoMT semantic segmentation model](https://docs.lightly.ai/train/stable/semantic_segmentation.html#semantic-segmentation-eomt-dinov3) with a DINOv3 backbone! 🚀 - \[[0.10.0](https://docs.lightly.ai/train/stable/changelog.html#changelog-0-10-0)\] - 2025-08-04: 🔥 **Train state-of-the-art semantic segmentation models** with our new [**DINOv2 semantic segmentation**](https://docs.lightly.ai/train/stable/semantic_segmentation.html) fine-tuning method! 🔥 - \[[0.9.0](https://docs.lightly.ai/train/stable/changelog.html#changelog-0-9-0)\] - 2025-07-21: [**DINOv2 pretraining**](https://docs.lightly.ai/train/stable/methods/dinov2.html) is now officially available! ## Workflows ````{grid} 1 1 2 3 ```{grid-item-card} Object Detection :link: object_detection.html
Train LTDETR detection models with DINOv2 or DINOv3 backbones.
``` ```{grid-item-card} Instance Segmentation :link: instance_segmentation.html
Train EoMT segmentation models with DINOv3 backbones.
``` ```{grid-item-card} Semantic Segmentation :link: semantic_segmentation.html
Train EoMT segmentation models with DINOv2 or DINOv3 backbones.
``` ```{grid-item-card} Distillation :link: methods/distillation.html
Distill knowledge from DINOv2 or DINOv3 into any model architecture.
``` ```{grid-item-card} Pretraining :link: methods/dinov2.html
Pretrain DINOv2 foundation models on your domain data.
``` ```{grid-item-card} Autolabeling :link: predict_autolabel.html
Generate high-quality pseudo labels for detection and segmentation tasks.
``` ```` ## How It Works [![Google Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/lightly-ai/lightly-train/blob/main/examples/notebooks/quick_start.ipynb) Install Lightly**Train** on Python 3.8+ for Windows, Linux or MacOS. ```bash pip install lightly-train ``` Then train an object detection model with: ```python import lightly_train if __name__ == "__main__": lightly_train.train_object_detection( out="out/my_experiment", model="dinov3/convnext-tiny-ltdetr-coco", data={ # ... Data configuration } ) ``` And run inference like this: ```python import lightly_train # Load the model from the best checkpoint model = lightly_train.load_model("out/my_experiment/exported_models/exported_best.pt") # Or load one of the models hosted by LightlyTrain model = lightly_train.load_model("dinov3/convnext-tiny-ltdetr-coco") results = model.predict("image.jpg") ``` See the full [quick start guide](#quick_start) for more details. ## Features - Python, Command Line, and [Docker](https://docs.lightly.ai/train/stable/docker.html) support - Built for [high performance](https://docs.lightly.ai/train/stable/performance/index.html) including [multi-GPU](https://docs.lightly.ai/train/stable/performance/multi_gpu.html) and [multi-node](https://docs.lightly.ai/train/stable/performance/multi_node.html) support - [Monitor training progress](https://docs.lightly.ai/train/stable/train.html#loggers) with MLflow, TensorBoard, Weights & Biases, and more - Runs fully on-premises with no API authentication - Export models in their native format for fine-tuning or inference - Export models in ONNX or TensorRT format for edge deployment ## Models LightlyTrain supports the following model and workflow combinations. ### Fine-tuning | Model | Object Detection | Instance Segmentation | Semantic Segmentation | | ------ | :----------------------------------------------------------------: | :---------------------------------------------------------------------: | :------------------------------------------------------------------------------------------: | | DINOv3 | ✅ [🔗](https://docs.lightly.ai/train/stable/object_detection.html) | ✅ [🔗](https://docs.lightly.ai/train/stable/instance_segmentation.html) | ✅ [🔗](https://docs.lightly.ai/train/stable/semantic_segmentation.html#use-eomt-with-dinov3) | | DINOv2 | ✅ [🔗](https://docs.lightly.ai/train/stable/object_detection.html) | | ✅ [🔗](https://docs.lightly.ai/train/stable/semantic_segmentation.html) | ### Distillation & Pretraining | Model | Distillation | Pretraining | | ------------------------------ | :----------------------------------------------------------------------------------------: | :--------------------------------------------------------------------: | | DINOv3 | ✅ [🔗](https://docs.lightly.ai/train/stable/methods/distillation.html#distill-from-dinov3) | | | DINOv2 | ✅ [🔗](https://docs.lightly.ai/train/stable/methods/distillation.html) | ✅ [🔗](https://docs.lightly.ai/train/stable/methods/dinov2.html) | | Torchvision ResNet, ConvNext, ShuffleNetV2 | ✅ [🔗](https://docs.lightly.ai/train/stable/models/torchvision.html) | ✅ [🔗](https://docs.lightly.ai/train/stable/models/torchvision.html) | | TIMM models | ✅ [🔗](https://docs.lightly.ai/train/stable/models/timm.html) | ✅ [🔗](https://docs.lightly.ai/train/stable/models/timm.html) | | Ultralytics YOLOv5–YOLO12 | ✅ [🔗](https://docs.lightly.ai/train/stable/models/ultralytics.html) | ✅ [🔗](https://docs.lightly.ai/train/stable/models/ultralytics.html) | | RT-DETR, RT-DETRv2 | ✅ [🔗](https://docs.lightly.ai/train/stable/models/rtdetr.html) | ✅ [🔗](https://docs.lightly.ai/train/stable/models/rtdetr.html) | | RF-DETR | ✅ [🔗](https://docs.lightly.ai/train/stable/models/rfdetr.html) | ✅ [🔗](https://docs.lightly.ai/train/stable/models/rfdetr.html) | | YOLOv12 | ✅ [🔗](https://docs.lightly.ai/train/stable/models/yolov12.html) | ✅ [🔗](https://docs.lightly.ai/train/stable/models/yolov12.html) | | Custom PyTorch Model | ✅ [🔗](https://docs.lightly.ai/train/stable/models/custom_models.html) | ✅ [🔗](https://docs.lightly.ai/train/stable/models/custom_models.html) | [Contact us](https://www.lightly.ai/contact) if you need support for additional models. ## Usage Events LightlyTrain collects anonymous usage events to help us improve the product. We only track training method, model architecture, and system information (OS, GPU). To opt-out, set the environment variable: `export LIGHTLY_TRAIN_EVENTS_DISABLED=1` ## License Lightly**Train** offers flexible licensing options to suit your specific needs: - **AGPL-3.0 License**: Perfect for open-source projects, academic research, and community contributions. Share your innovations with the world while benefiting from community improvements. - **Commercial License**: Ideal for businesses and organizations that need proprietary development freedom. Enjoy all the benefits of LightlyTrain while keeping your code and models private. We're committed to supporting both open-source and commercial users. Please [contact us](https://www.lightly.ai/contact) to discuss the best licensing option for your project! ## Contact [![Website](https://img.shields.io/badge/Website-lightly.ai-blue?style=for-the-badge&logo=safari&logoColor=white)](https://www.lightly.ai/lightly-train)
[![Discord](https://img.shields.io/discord/752876370337726585?style=for-the-badge&logo=discord&logoColor=white&label=discord&color=7289da)](https://discord.gg/xvNJW94)
[![GitHub](https://img.shields.io/badge/GitHub-lightly--ai-black?style=for-the-badge&logo=github&logoColor=white)](https://github.com/lightly-ai/lightly-train)
[![X](https://img.shields.io/badge/X-lightlyai-black?style=for-the-badge&logo=x&logoColor=white)](https://x.com/lightlyai)
[![LinkedIn](https://img.shields.io/badge/LinkedIn-lightly--tech-blue?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/company/lightly-tech) ```{toctree} --- hidden: maxdepth: 2 --- quick_start installation train/index object_detection instance_segmentation semantic_segmentation predict_autolabel export embed models/index methods/index data/index performance/index docker tutorials/index python_api/index faq changelog ```