MAE

Example implementation of the Masked Autoencoder (MAE) architecture. MAE is a transformer model based on the Vision Transformer (ViT) architecture. It learns image representations by predicting pixel values for masked patches on the input images. The network is split into an encoder and decoder. The encoder generates the image representation and the decoder predicts the pixel values from the representation. MAE increases training efficiency compared to other transformer architectures by encoding only part of the input image and using a shallow decoder architecture.

Reference:

Masked Autoencoders Are Scalable Vision Learners, 2021

Note

MAE requires TIMM to be installed

pip install "timm>=0.9.9"

This example can be run from the command line with:

python lightly/examples/pytorch/mae.py
# Note: The model and training settings do not follow the reference settings
# from the paper. The settings are chosen such that the example can easily be
# run on a small dataset with a single GPU.
import torch
import torchvision
from timm.models.vision_transformer import vit_base_patch32_224
from torch import nn

from lightly.models import utils
from lightly.models.modules import MAEDecoderTIMM, MaskedVisionTransformerTIMM
from lightly.transforms import MAETransform


class MAE(nn.Module):
    def __init__(self, vit):
        super().__init__()

        decoder_dim = 512
        self.mask_ratio = 0.75
        self.patch_size = vit.patch_embed.patch_size[0]

        self.backbone = MaskedVisionTransformerTIMM(vit=vit)
        self.sequence_length = self.backbone.sequence_length
        self.decoder = MAEDecoderTIMM(
            num_patches=vit.patch_embed.num_patches,
            patch_size=self.patch_size,
            embed_dim=vit.embed_dim,
            decoder_embed_dim=decoder_dim,
            decoder_depth=1,
            decoder_num_heads=16,
            mlp_ratio=4.0,
            proj_drop_rate=0.0,
            attn_drop_rate=0.0,
        )

    def forward_encoder(self, images, idx_keep=None):
        return self.backbone.encode(images=images, idx_keep=idx_keep)

    def forward_decoder(self, x_encoded, idx_keep, idx_mask):
        # build decoder input
        batch_size = x_encoded.shape[0]
        x_decode = self.decoder.embed(x_encoded)
        x_masked = utils.repeat_token(
            self.decoder.mask_token, (batch_size, self.sequence_length)
        )
        x_masked = utils.set_at_index(x_masked, idx_keep, x_decode.type_as(x_masked))

        # decoder forward pass
        x_decoded = self.decoder.decode(x_masked)

        # predict pixel values for masked tokens
        x_pred = utils.get_at_index(x_decoded, idx_mask)
        x_pred = self.decoder.predict(x_pred)
        return x_pred

    def forward(self, images):
        batch_size = images.shape[0]
        idx_keep, idx_mask = utils.random_token_mask(
            size=(batch_size, self.sequence_length),
            mask_ratio=self.mask_ratio,
            device=images.device,
        )
        x_encoded = self.forward_encoder(images=images, idx_keep=idx_keep)
        x_pred = self.forward_decoder(
            x_encoded=x_encoded, idx_keep=idx_keep, idx_mask=idx_mask
        )

        # get image patches for masked tokens
        patches = utils.patchify(images, self.patch_size)
        # must adjust idx_mask for missing class token
        target = utils.get_at_index(patches, idx_mask - 1)
        return x_pred, target


vit = vit_base_patch32_224()
model = MAE(vit)

device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)

transform = MAETransform()
# we ignore object detection annotations by setting target_transform to return 0
dataset = torchvision.datasets.VOCDetection(
    "datasets/pascal_voc",
    download=True,
    transform=transform,
    target_transform=lambda t: 0,
)
# or create a dataset from a folder containing images or videos:
# dataset = LightlyDataset("path/to/folder")

dataloader = torch.utils.data.DataLoader(
    dataset,
    batch_size=256,
    shuffle=True,
    drop_last=True,
    num_workers=8,
)

criterion = nn.MSELoss()
optimizer = torch.optim.AdamW(model.parameters(), lr=1.5e-4)

print("Starting Training")
for epoch in range(10):
    total_loss = 0
    for batch in dataloader:
        views = batch[0]
        images = views[0].to(device)  # views contains only a single view
        predictions, targets = model(images)
        loss = criterion(predictions, targets)
        total_loss += loss.detach()
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()
    avg_loss = total_loss / len(dataloader)
    print(f"epoch: {epoch:>02}, loss: {avg_loss:.5f}")