SuperGradients¶
Important
SuperGradients must be installed with
pip install "lightly-train[super-gradients]".
Warning
SuperGradients support is still experimental. There might be unexpected warnings in the logs.
Supported Models¶
PP-LiteSeg
super_gradients/pp_lite_b_segsuper_gradients/pp_lite_b_seg50super_gradients/pp_lite_b_seg75super_gradients/pp_lite_t_segsuper_gradients/pp_lite_t_seg50super_gradients/pp_lite_t_seg75
SSD
super_gradients/ssd_lite_mobilenet_v2super_gradients/ssd_mobilenet_v1
YOLO-NAS
super_gradients/yolo_nas_lsuper_gradients/yolo_nas_msuper_gradients/yolo_nas_pose_lsuper_gradients/yolo_nas_pose_msuper_gradients/yolo_nas_pose_nsuper_gradients/yolo_nas_pose_ssuper_gradients/yolo_nas_s
Pretrain a SuperGradients Model¶
Pretraining a SuperGradients models with LightlyTrain is straightforward. Below we will provide the minimum scripts for pretraining using super_gradients/yolo_nas_s as an example:
import lightly_train
if __name__ == "__main__":
    lightly_train.train(
        out="out/my_experiment",                # Output directory.
        data="my_data_dir",                     # Directory with images.
        model="super_gradients/yolo_nas_s",     # Pass the supergradient model.
    )
lightly-train train out="out/my_experiment" data="my_data_dir" model="super_gradients/yolo_nas_s"
You can reload the exported model by super_gradients directly:
from super_gradients.training import models
model = models.get(
  model_name="yolo_nas_s",
  num_classes=3,
  checkpoint_path="out/my_experiment/exported_models/exported_last.pt",
)