TIMM¶
This page describes how to use TIMM models with LightlyTrain.
Important
TIMM must be installed with
pip install "lightly-train[timm]".
Supported Models¶
All timm models are supported, see timm docs for a full list.
Examples:
timm/resnet50timm/convnext_basetimm/vit_base_patch16_224
Pretrain a TIMM Model¶
Pretraining TIMM models with LightlyTrain is straightforward. Below we will provide the minimum scripts for pretraining using timm/resnet18 as an example:
import lightly_train
if __name__ == "__main__":
    lightly_train.train(
        out="out/my_experiment",                # Output directory.
        data="my_data_dir",                     # Directory with images.
        model="timm/resnet18",                  # Pass the timm model.
    )
lightly-train train out="out/my_experiment" data="my_data_dir" model="timm/resnet18"
You can reload the exported model by timm directly:
import timm
model = timm.create_model(
  model_name="resnet18", 
  pretrained=False, 
  checkpoint_path="out/my_experiment/exported_models/exported_last.pt",
)