SuperGradients¶

Important

SuperGradients must be installed with pip install "lightly-train[super-gradients]".

Warning

SuperGradients support is still experimental. There might be unexpected warnings in the logs.

Pretrain and Fine-tune a SuperGradients Model¶

Pretrain¶

Pretraining a SuperGradients models with LightlyTrain is straightforward. Below we provide the minimum scripts for pretraining using super_gradients/yolo_nas_s as an example:

import lightly_train

if __name__ == "__main__":
    lightly_train.train(
        out="out/my_experiment",                # Output directory.
        data="my_data_dir",                     # Directory with images.
        model="super_gradients/yolo_nas_s",     # Pass the supergradient model.
    )

Or alternatively, pass directly a SuperGradients model instance:

from super_gradients.training import models

import lightly_train

if __name__ == "__main__":
    model = models.get(model_name="yolo_nas_s", num_classes=3)  # Load the model.
    lightly_train.train(
        out="out/my_experiment",                # Output directory.
        data="my_data_dir",                     # Directory with images.
        model=model,                            # Pass the SuperGradients model.
    )
lightly-train train out="out/my_experiment" data="my_data_dir" model="super_gradients/yolo_nas_s"

Fine-tune¶

After pretraining, you can load the exported model for fine-tuning with SuperGradients:

from super_gradients.training import models

model = models.get(
  model_name="yolo_nas_s",
  num_classes=3,
  checkpoint_path="out/my_experiment/exported_models/exported_last.pt",
)

Supported Models¶

  • PP-LiteSeg

    • super_gradients/pp_lite_b_seg

    • super_gradients/pp_lite_b_seg50

    • super_gradients/pp_lite_b_seg75

    • super_gradients/pp_lite_t_seg

    • super_gradients/pp_lite_t_seg50

    • super_gradients/pp_lite_t_seg75

  • SSD

    • super_gradients/ssd_lite_mobilenet_v2

    • super_gradients/ssd_mobilenet_v1

  • YOLO-NAS

    • super_gradients/yolo_nas_l

    • super_gradients/yolo_nas_m

    • super_gradients/yolo_nas_pose_l

    • super_gradients/yolo_nas_pose_m

    • super_gradients/yolo_nas_pose_n

    • super_gradients/yolo_nas_pose_s

    • super_gradients/yolo_nas_s