SuperGradients¶
Important
SuperGradients must be installed with
pip install "lightly-train[super-gradients]"
.
Warning
SuperGradients support is still experimental. There might be unexpected warnings in the logs.
Pretrain and Fine-tune a SuperGradients Model¶
Pretrain¶
Pretraining a SuperGradients models with LightlyTrain is straightforward. Below we
provide the minimum scripts for pretraining using super_gradients/yolo_nas_s
as an
example:
import lightly_train
if __name__ == "__main__":
lightly_train.train(
out="out/my_experiment", # Output directory.
data="my_data_dir", # Directory with images.
model="super_gradients/yolo_nas_s", # Pass the supergradient model.
)
Or alternatively, pass directly a SuperGradients model instance:
from super_gradients.training import models
import lightly_train
if __name__ == "__main__":
model = models.get(model_name="yolo_nas_s", num_classes=3) # Load the model.
lightly_train.train(
out="out/my_experiment", # Output directory.
data="my_data_dir", # Directory with images.
model=model, # Pass the SuperGradients model.
)
lightly-train train out="out/my_experiment" data="my_data_dir" model="super_gradients/yolo_nas_s"
Fine-tune¶
After pretraining, you can load the exported model for fine-tuning with SuperGradients:
from super_gradients.training import models
model = models.get(
model_name="yolo_nas_s",
num_classes=3,
checkpoint_path="out/my_experiment/exported_models/exported_last.pt",
)
Supported Models¶
PP-LiteSeg
super_gradients/pp_lite_b_seg
super_gradients/pp_lite_b_seg50
super_gradients/pp_lite_b_seg75
super_gradients/pp_lite_t_seg
super_gradients/pp_lite_t_seg50
super_gradients/pp_lite_t_seg75
SSD
super_gradients/ssd_lite_mobilenet_v2
super_gradients/ssd_mobilenet_v1
YOLO-NAS
super_gradients/yolo_nas_l
super_gradients/yolo_nas_m
super_gradients/yolo_nas_pose_l
super_gradients/yolo_nas_pose_m
super_gradients/yolo_nas_pose_n
super_gradients/yolo_nas_pose_s
super_gradients/yolo_nas_s