BYOL

Example implementation of the BYOL architecture.

Reference:

Bootstrap your own latent: A new approach to self-supervised Learning, 2020

https://img.shields.io/badge/Open%20in%20Colab-blue?logo=googlecolab&label=%20&labelColor=5c5c5c

This example can be run from the command line with:

python lightly/examples/pytorch/byol.py
# This example requires the following dependencies to be installed:
# pip install lightly

# Note: The model and training settings do not follow the reference settings
# from the paper. The settings are chosen such that the example can easily be
# run on a small dataset with a single GPU.

import copy

import torch
import torchvision
from torch import nn

from lightly.loss import NegativeCosineSimilarity
from lightly.models.modules import BYOLPredictionHead, BYOLProjectionHead
from lightly.models.utils import deactivate_requires_grad, update_momentum
from lightly.transforms.byol_transform import (
    BYOLTransform,
    BYOLView1Transform,
    BYOLView2Transform,
)
from lightly.utils.scheduler import cosine_schedule


class BYOL(nn.Module):
    def __init__(self, backbone):
        super().__init__()

        self.backbone = backbone
        self.projection_head = BYOLProjectionHead(512, 1024, 256)
        self.prediction_head = BYOLPredictionHead(256, 1024, 256)

        self.backbone_momentum = copy.deepcopy(self.backbone)
        self.projection_head_momentum = copy.deepcopy(self.projection_head)

        deactivate_requires_grad(self.backbone_momentum)
        deactivate_requires_grad(self.projection_head_momentum)

    def forward(self, x):
        y = self.backbone(x).flatten(start_dim=1)
        z = self.projection_head(y)
        p = self.prediction_head(z)
        return p

    def forward_momentum(self, x):
        y = self.backbone_momentum(x).flatten(start_dim=1)
        z = self.projection_head_momentum(y)
        z = z.detach()
        return z


resnet = torchvision.models.resnet18()
backbone = nn.Sequential(*list(resnet.children())[:-1])
model = BYOL(backbone)

device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)

# We disable resizing and gaussian blur for cifar10.
transform = BYOLTransform(
    view_1_transform=BYOLView1Transform(input_size=32, gaussian_blur=0.0),
    view_2_transform=BYOLView2Transform(input_size=32, gaussian_blur=0.0),
)
dataset = torchvision.datasets.CIFAR10(
    "datasets/cifar10", download=True, transform=transform
)
# or create a dataset from a folder containing images or videos:
# dataset = LightlyDataset("path/to/folder", transform=transform)

dataloader = torch.utils.data.DataLoader(
    dataset,
    batch_size=256,
    shuffle=True,
    drop_last=True,
    num_workers=8,
)

criterion = NegativeCosineSimilarity()
optimizer = torch.optim.SGD(model.parameters(), lr=0.06)

epochs = 10

print("Starting Training")
for epoch in range(epochs):
    total_loss = 0
    momentum_val = cosine_schedule(epoch, epochs, 0.996, 1)
    for batch in dataloader:
        x0, x1 = batch[0]
        update_momentum(model.backbone, model.backbone_momentum, m=momentum_val)
        update_momentum(
            model.projection_head, model.projection_head_momentum, m=momentum_val
        )
        x0 = x0.to(device)
        x1 = x1.to(device)
        p0 = model(x0)
        z0 = model.forward_momentum(x0)
        p1 = model(x1)
        z1 = model.forward_momentum(x1)
        loss = 0.5 * (criterion(p0, z1) + criterion(p1, z0))
        total_loss += loss.detach()
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()
    avg_loss = total_loss / len(dataloader)
    print(f"epoch: {epoch:>02}, loss: {avg_loss:.5f}")