TiCo

Example implementation of Transformation Invariance and Covariance Contrast (TiCo) for self-supervised visual representation learning. Similar to BYOL, this method is based on maximizing the agreement among embeddings of different distorted versions of the same image, which pushes the encoder to produce transformation invariant representations.

Reference:

TiCo: Transformation Invariance and Covariance Contrast for Self-Supervised Visual Representation Learning, 2022

https://img.shields.io/badge/Open%20in%20Colab-blue?logo=googlecolab&label=%20&labelColor=5c5c5c

This example can be run from the command line with:

python lightly/examples/pytorch/tico.py
# This example requires the following dependencies to be installed:
# pip install lightly

# Note: The model and training settings do not follow the reference settings
# from the paper. The settings are chosen such that the example can easily be
# run on a small dataset with a single GPU.

import copy

import torch
import torchvision
from torch import nn

from lightly.loss.tico_loss import TiCoLoss
from lightly.models.modules.heads import TiCoProjectionHead
from lightly.models.utils import deactivate_requires_grad, update_momentum
from lightly.transforms import TiCoTransform, TiCoView1Transform, TiCoView2Transform
from lightly.utils.scheduler import cosine_schedule


class TiCo(nn.Module):
    def __init__(self, backbone):
        super().__init__()

        self.backbone = backbone
        self.projection_head = TiCoProjectionHead(512, 1024, 256)

        self.backbone_momentum = copy.deepcopy(self.backbone)
        self.projection_head_momentum = copy.deepcopy(self.projection_head)

        deactivate_requires_grad(self.backbone_momentum)
        deactivate_requires_grad(self.projection_head_momentum)

    def forward(self, x):
        y = self.backbone(x).flatten(start_dim=1)
        z = self.projection_head(y)
        return z

    def forward_momentum(self, x):
        y = self.backbone_momentum(x).flatten(start_dim=1)
        z = self.projection_head_momentum(y)
        z = z.detach()
        return z


resnet = torchvision.models.resnet18()
backbone = nn.Sequential(*list(resnet.children())[:-1])
model = TiCo(backbone)

device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)

# TiCo uses the same augmentations as BYOL.
# We disable resizing and gaussian blur for cifar10.
transform = TiCoTransform(
    view_1_transform=TiCoView1Transform(input_size=32, gaussian_blur=0.0),
    view_2_transform=TiCoView2Transform(input_size=32, gaussian_blur=0.0),
)
dataset = torchvision.datasets.CIFAR10(
    "datasets/cifar10", download=True, transform=transform
)
# or create a dataset from a folder containing images or videos:
# dataset = LightlyDataset("path/to/folder", transform=transform)

dataloader = torch.utils.data.DataLoader(
    dataset,
    batch_size=256,
    shuffle=True,
    drop_last=True,
    num_workers=8,
)

criterion = TiCoLoss()

optimizer = torch.optim.SGD(model.parameters(), lr=0.06)

epochs = 10

print("Starting Training")
for epoch in range(epochs):
    total_loss = 0
    momentum_val = cosine_schedule(epoch, epochs, 0.996, 1)
    for batch in dataloader:
        x0, x1 = batch[0]
        update_momentum(model.backbone, model.backbone_momentum, m=momentum_val)
        update_momentum(
            model.projection_head, model.projection_head_momentum, m=momentum_val
        )
        x0 = x0.to(device)
        x1 = x1.to(device)
        z0 = model(x0)
        z1 = model.forward_momentum(x1)
        loss = criterion(z0, z1)
        total_loss += loss.detach()
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()
    avg_loss = total_loss / len(dataloader)
    print(f"epoch: {epoch:>02}, loss: {avg_loss:.5f}")